Bounded independence vs. moduli

Ravi Boppana, Johan Håstad, Chin Ho Lee and Emanuele Viola

Pseudorandomness

- Given a string sampled from a distribution D
- Can you test if it comes from D or it is random?

A distribution D fools a test T if
$\mid \operatorname{Pr}[T(D)$ accepts $]-\operatorname{Pr}[T(U)$ accepts $] \mid \leq 1 / 3$, where U is the uniform distribution.

What are mod m tests?

- Count the number of 1 s in the input string
- Check if it is divisible by m

A mod \boldsymbol{m} test on n bits accepts if the number of 1 's in the input is divisible by m.

What are \boldsymbol{k}-wise uniform distributions on \boldsymbol{n} bits?

- Look at any of the k bits of the distribution
- These k bits must be uniformly distributed

A distribution D on n bits is \boldsymbol{k}-wise uniform if its marginal distribution on every k bits is uniform.

Example: a 2-wise uniform distribution on $\mathbf{3}$ bits

Sample a string from $\{000,011,101,110\}$ at random

These strings have the same parity

What can k-wise uniform distributions fool?

- Any test on k bits (by definition)
- Combinatorial rectangles, low-depth circuits, halfspaces, etc.

For what values of k, every k-wise uniform distribution fools mod m test?

Fails completely when $m=2, k=n-1$

- Look at our example
- All the strings in the distribution are accepted by mod 2 test!

What about $m=3$?

- What is the largest k such that there exists a k-wise distribution in which all strings are accepted by mod 3 test?
- Somewhat surprisingly, k can still be $\Omega(n)$!

Our results

If $k=\Omega(n / m)$ then every k-wise uniform distribution fools $\bmod m$ test.
If $k=O\left(n / m^{2} \log m\right)$ then some k-wise uniform distribution fails to fool mod m test.

Techniques

Fourier analysis, approximation theory, etc.
Approximation theory

Symmetrization

Continuous approximation

